设为首页 | 加入收藏 | 联系我们
校园资源 您现在的位置:首页 >> 网上资源 >> 校园资源 >> 视频

初中数学教与学 数学思考是灵魂 教学方法是行为

【发布时间:2017-11-10 阅读次数:99 来源:新康教育中心】

初中数学教学,加强数学思想方法的教学,是基础数学教育的关键。特别在对初中生能力的培养这一问题上,以及社会对数学价值的要求上,都使我们认识到,进一步培养学生对数学思想方法的掌握,是数学教学重中之重的问题。


一.初中数学思想的渗透


所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。


二.了解《大纲》要求,把握教学方法


1.明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生了解数学思想:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。我们在教学过程中,要激发学生学习数学的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在教学中,我们教师要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次。


2.从“方法”了解“思想”,用“思想”指导“方法”。在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。因此,在初中数学教学中,教师加强学生对数学方法的理解和应用,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,在教学中,通过对具体数学方法的学习,使学生逐步领略这些数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中。


三.渗透数学思想和方法的原则


1.循序渐进,螺旋上升的原则。


学生对学习数学、数学思想和方法的领会、掌握具有一个“从特殊到一般,从具体到抽象,从感性到理性,从低级到高级”的认识过程。学生对某一思想和方法首先是产生感性认识,经过多次反复练习,然后逐渐概括上升为理性认识,最后在对数学知识的掌握中,对形成的数学思想和方法进行验证和发展,进一步通过用数学知识解决问题从而加深理性认识。


2.坚持钻研教材,层次渗透的原则。《数学大纲》对初中数学中渗透的数学思想和方法划分为三个层次,即“了解“”理解”和“会应用”。要认真把握好“了解”“理解“”会应用”这三个层次。渗透层次数学教学思想和方法常常蕴含于教材之中,在熟悉教材、钻研教材的基础上,领悟隐含于教材字里行间的数学思想和方法。如初一“用字母表示数的变元思想”方程思想,从数到式的过渡,是由特殊到一般,由具体到抽象的飞跃。


四.在展现数学知识的形成与应用过程中,提炼数学思想方法


数学知识发生的过程也是其思想方法产生的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取“问题情境—建立模型—解释、应用与拓展”的模式,通过对相关问题情境的研究,找到有效切入点,进而探究知识发生的过程,将学生的思维和经验,全部投入到接受问题、分析问题和感悟思想方法的挑战之中,并在此过程中领会如数感、符号感、空间观念、统计观念、应用意识和推理能力等数学思想方法。


五.有计划、有目的、有组织地上好思想方法训练课


小结课、复习课是系统知识,深化知识,使知识内化的最佳课型,也是渗透数学思想方法的最佳时机,通过对所学知识系统整理,挖掘提炼解题指导思想,归纳总结上升到思想方法的高度,掌握本质,揭示规律。初中数学中有许多体现“分类讨论”思想的知识和技能。如:(1)实数的分类;(2)按角的大小和边的关系对三角形进行分类;(3)求任意实数的绝对值分大于零、等于零、小于零三种情况讨论;(4)把两个三角形的形状、大小关系揭示得较为清楚的方法,是把两个三角形分为相似与不相似两大类;……所有这些,充分体现了分类讨论的思想方法,有利于学生认识物质世界事物之间的联系与区别。


最后,我要说的是:数学思想和方法是数学问题的本质反映,追求的是“授人以渔”。在课堂教学中渗透数学思想和方法,更新数学教学观念,不仅能使学生理解问题的本质,而且可以帮助学生通过数学思想方法的迁移去认识教材以外的数学问题的本质特征,丰富学生的思维世界,使学生成为有创造能力、可持续发展的新时代人才。(曹秋敏)

上一篇:暂无   下一篇:暂无